Effects of the stellar wind on the Ly α transit of close-in planets

Author:

Carolan S1ORCID,Vidotto A A1ORCID,Villarreal D’Angelo C12ORCID,Hazra G1ORCID

Affiliation:

1. School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland

2. Observatorio Astronómico de Córdoba – Universidad Nacional de Córdoba. Laprida 854, X5000BGR Córdoba, Argentina

Abstract

ABSTRACT We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly α transits of a hot Jupiter (HJ) and a warm Neptune (WN). We find that increasing the stellar wind mass-loss rate from 0 (no wind) to 100 times the solar mass-loss rate value causes reduced atmospheric escape in both planets (a reduction of 65 per cent and 40 per cent for the HJ and WN, respectively, compared to the ‘no wind’ case). For weaker stellar winds (lower ram pressure), the reduction in planetary escape rate is very small. However, as the stellar wind becomes stronger, the interaction happens deeper in the planetary atmosphere, and, once this interaction occurs below the sonic surface of the planetary outflow, further reduction in evaporation rates is seen. We classify these regimes in terms of the geometry of the planetary sonic surface. ‘Closed’ refers to scenarios where the sonic surface is undisturbed, while ‘open’ refers to those where the surface is disrupted. We find that the change in stellar wind strength affects the Ly α transit in a non-linear way (note that here we do not include charge-exchange processes). Although little change is seen in planetary escape rates (≃ 5.5 × 1011 g s−1) in the closed to partially open regimes, the Ly α absorption (sum of the blue [−300, −40 km s−1] and red [40, 300 km s−1] wings) changes from 21 to 6 per cent as the stellar wind mass-loss rate is increased in the HJ set of simulations. For the WN simulations, escape rates of ≃ 6.5 × 1010 g s−1 can cause transit absorptions that vary from 8.8 to 3.7 per cent, depending on the stellar wind strength. We conclude that the same atmospheric escape rate can produce a range of absorptions depending on the stellar wind and that neglecting this in the interpretation of Ly α transits can lead to underestimation of planetary escape rates.

Funder

European Research Council

Irish Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3