3D MHD simulations of accretion on to stars with tilted magnetic and rotational axes

Author:

Romanova M M12,Koldoba A V3,Ustyugova G V4,Blinova A A12,Lai D12,Lovelace R V E125

Affiliation:

1. Department of Astronomy, Cornell University, Ithaca, NY 14853-6801, USA

2. Carl Sagan Institute, Cornell University, Ithaca, NY 14853-6801, USA

3. Laboratory of Fluid Dynamics and Seismoacoustics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia

4. Keldysh Institute for Applied Mathematics, Moscow 125047, Russia

5. Department of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853-6801, USA

Abstract

ABSTRACT We present results of global 3D magnetohydrodynamic simulations of accretion on to magnetized stars where both the magnetic and rotational axes of the star are tilted about the rotational axis of the disc. We observed that initially the inner parts of the disc are warped, tilted, and precess due to the magnetic interaction between the magnetosphere and the disc. Later, larger tilted discs form with the size increasing with the magnetic moment of the star. The normal vector to the discs are tilted at different angles, from ∼5°–10° up to ∼30°–40°. Small tilts may result from the winding of the magnetic field lines about the rotational axis of the star and the action of the magnetic force which tends to align the disc. Another possible explanation is the magnetic Bardeen–Petterson effect in which the disc settles in the equatorial plane of the star due to precessional and viscous torques in the disc. Tilted discs slowly precess with the time-scale of the order of ∼50 Keplerian periods at the reference radius (∼3 stellar radii). Our results can be applied to different types of stars where signs of tilted discs and/or slow precession have been observed.

Funder

National Aeronautics and Space Administration

HEC

NAS

Ames Research Center

NCCS

Goddard Space Flight Center

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3