Possible evolution of the circum-galactic medium around QSOs with QSO age and cosmic time revealed by Ly α haloes

Author:

Momose Rieko12,Goto Tomotsugu2,Utsumi Yousuke3,Hashimoto Tetsuya2,Chiang Chia-Ying2ORCID,Kim Seong-Jin2,Kashikawa Nobunari1,Shimasaku Kazuhiro14,Miyazaki Satoshi5

Affiliation:

1. Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2. Institute of Astronomy, National Tsing Hua University, 101, Section 2 Kuang-Fu Road, Hsinchu 30013, Taiwan

3. Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

4. Research Center for the Early Universe, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

5. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Abstract

ABSTRACT We first present new Subaru narrow-band observations of the Ly α halo around the quasi-stellar object (QSO) CFHQ J232908−030158 at z = 6.42, which appears the most luminous and extended halo at z > 5 (LLy α = 9.8 × 1043 erg s−1 within 37 pkpc diameter). Then, combining these measurements with available data in the literature, we find two different evolutions of QSOs’ Ly α haloes. First is a possible short-term evolution with QSO age seen in four z > 6 QSOs. We find the anticorrelation between the Ly α halo scales with QSOs’ infrared (IR) luminosity, with J2329−0301’s halo being the brightest and largest. It indicates that ionizing photons escape more easily out to circum-galactic regions when host galaxies are less dusty. We also find a positive correlation between IR luminosity and black hole mass (MBH). Given MBH as an indicator of QSO age, we propose a hypothesis that a large Ly α halo mainly exists around QSOs in the young phase of their activity due to a small amount of dust. The second is an evolution with cosmic time seen over z ∼ 2–5. We find the increase of surface brightness towards lower redshift with a similar growth rate to that of dark matter haloes (DHs) that evolve to MDH = 1012–1013 M⊙ at z = 2. The extent of Ly α haloes is also found to increase at a rate scaling with the virial radius of growing DHs, $r_\text{vir} \propto M_\text{DH}^{1/3}(1+z)^{-1}$. These increases are consistent with a scenario that the circum-galactic medium around QSOs evolves in mass and size keeping pace with hosting DHs.

Funder

Department of Astronomical Sciences of the Graduate University for Advanced Studies

Japan Society for the Promotion of Science

Ministry of Science and Technology of Taiwan

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3