Resonant absorption of kink MHD waves in inclined and asymmetric coronal loops

Author:

Amiri S1,Karami K1ORCID,Ebrahimi Z2ORCID

Affiliation:

1. Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj, Iran

2. Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), University of Maragheh, P.O. Box 55136-553, Maragheh, Iran

Abstract

ABSTRACT This paper separately evaluates the effects of inclination and asymmetry of solar coronal loops on the resonant absorption of kink magnetohydrodynamic oscillations. We modelled a typical coronal loop by a straight and axisymmetric cylindrical magnetic flux tube filled with cold plasma. We solved the dispersion relation numerically for different values of the longitudinal mass density stratification. We show that, in inclined and asymmetric loops, the frequencies and their corresponding damping rates of the fundamental and first-overtone modes of kink oscillations are smaller in comparison with semi-circular uninclined loops with the same lengths. The results also indicate that, the period ratio P1/P2, increases with increasing the inclination of the loop, but it decreases less than $2{{\ \rm per\ cent}}$ while imposing the asymmetry to each loop side, up to $9.66{{\ \rm per\ cent}}$ of the loop length. The ratio of each mode frequency to its corresponding damping rate remain unchanged approximately while the inclination or the asymmetry imposed. Hence, we conclude that these ratios are reliable for inferring the physical parameters of coronal loops and coronal medium, regardless of the loop shape or the state of its inclination. In addition, in contrast with the effect of asymmetry, which is not significant on the period ratio P1/P2, when an observed oscillating loop has a smaller apex height, the state of its inclination is an important factor that should be considered, especially when the period ratio P1/P2, is taken into consideration for coronal seismology.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3