Desorption of N2, CO, CH4, and CO2 from interstellar carbonaceous dust analogues

Author:

Maté B1,Jimenez-Redondo M1,Peláez R J1,Tanarro I1,Herrero V J1

Affiliation:

1. Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121–123, E-28006 Madrid, Spain

Abstract

ABSTRACT The interaction of volatile species with carbonaceous interstellar dust analogues is of relevance in the chemistry and physics of dense clouds in the interstellar medium. Two deposits of hydrogenated amorphous carbon (HAC), with different morphologies and aromatic versus aliphatic ratio in their structure, have been grown to model interstellar dust. The interaction of N2, CO, CH4, and CO2 with these two surfaces has been investigated using thermal programmed desorption (TPD). Desorption energy distributions were obtained by analysing TPD spectra for one monolayer coverage with the Polanyi–Wigner equation. The desorption energies found in this work for N2, CO, and CH4 are larger by 10–20 per cent than those reported in the literature for siliceous or amorphous solid water surfaces. Moreover, the experiments suggest that the interaction of the volatiles with the aromatic substructure of HAC is stronger than that with the aliphatic part. Desorption of CO2 from the HAC surfaces follows zero-order kinetics, reflecting the predominance of CO2–CO2 interactions. A model simulation of the heating of cold cloud cores shows that the volatiles considered in this work would desorb sequentially from carbonaceous dust surfaces with desorption times ranging from hundreds to tens of thousands of years, depending on the molecule and on the mass of the core.

Funder

Ministerio de Economia y Competitividad

European Union

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3