On the physical requirements for a pre-reionization origin of the unresolved near-infrared background

Author:

Helgason K1,Ricotti M2,Kashlinsky A34,Bromm V5

Affiliation:

1. Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany

2. Department of Astronomy, University of Maryland, College Park, MD 20742, USA

3. Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

4. SSAI, Lanham, MD 20706, USA

5. Department of Astronomy, University of Texas, Austin, TX 78712, USA

Abstract

ABSTRACT The study of the cosmic near-infrared background (CIB) light after subtraction of resolved sources can push the limits of current observations and yield information on galaxies and quasars in the early universe. Spatial fluctuations of the CIB exhibit a clustering excess at angular scales ∼1° whose origin has not been conclusively identified, but disentangling the relative contribution from low- and high-redshift sources is not trivial. We explore the likelihood that this signal is dominated by emission from galaxies and accreting black holes (BHs) in the early Universe. We find that, the measured fluctuation signal is too large to be produced by galaxies at redshifts z > 8, which only contribute ∼0.01–0.05 nW m−2 sr−1 to the CIB. Additionally, if the first small mass galaxies have a normal initial mass function, the light of their ageing stars (fossils) integrated over cosmic time contributes a comparable amount to the CIB as their pre-reionization progenitors. In order to produce the observed level of CIB fluctuation without violating constraints from galaxy counts and the electron optical depth of the IGM, minihaloes at z > 12 must form preferably top-heavy stars with efficiency f* ≳ 0.1 and at the same time maintain a very low escape fraction of ionizing radiation, fesc < 0.1 per cent. If instead the CIB fluctuations are produced by high-z BHs, one requires vigorous accretion in the early universe reaching ρacc ≳ 105 M⊙ Mpc−3 by z ≃ 10. This growth must stop by z ∼ 6 and be significantly obscured not to overproduce the soft cosmic X-ray background and its observed coherence with the CIB. We therefore find the range of suitable high-z explanations to be narrow, but could possibly be widened by including additional physics and evolution at those epochs.

Funder

European Union Seventh Framework Programme

NESSF Program

NSF CDI-typeII

Theoretical and Computational Astrophysics Network

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observational evidence for primordial black holes: A positivist perspective;Physics Reports;2024-02

2. Primordial black holes;Black Holes in the Era of Gravitational-Wave Astronomy;2024

3. Distinguishing the impact and signature of black holes from different origins in early cosmic history;Monthly Notices of the Royal Astronomical Society;2023-12-28

4. Primordial black holes as near-infrared background sources;Monthly Notices of the Royal Astronomical Society;2023-11-07

5. Prospects of additional contribution at optical-NIR band of EBL in the light of VHE spectra;Monthly Notices of the Royal Astronomical Society;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3