Bondi–Hoyle–Lyttleton accretion by binary stars

Author:

Comerford T A F1ORCID,Izzard R G12ORCID,Booth R A1ORCID,Rosotti G13ORCID

Affiliation:

1. Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

2. Astrophyhsics Research Group, Faculty of Engineering and Physics, University of Surrey, Guildford GU2 7XH, UK

3. Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, the Netherlands

Abstract

ABSTRACT Binary stars often move through an ambient medium from which they accrete material and angular momentum, as in triple-star systems, star-forming clouds, young globular clusters, and in the centres of galaxies. A binary form of Bondi–Hoyle–Lyttleton accretion results whereby the accretion rate depends on the binary properties: the stellar masses and separation, and the relative wind speed. We present the results of simulations performed with the hydrodynamic code gandalf, to determine the mass accretion rates over a range of binary separations, inclinations, and mass ratios. When the binary separation is short, the binary system accretes like a single star, while accretion on to stars in wide binaries is barely affected by their companion. We investigate intermediate-separation systems in some detail, finding that as the binary separation is increased, accretion rates smoothly decrease from the rate equal to that of a single star to the rate expected from two isolated stars. The form of this decrease depends on the relative centre-of-mass velocity of the binary and the gas, with faster-moving binaries showing a shallower decrease. Accretion rates vary little with orbital inclination, except when the orbit is side-on and the stars pass through each others’ wakes. The specific angular momentum accretion rate also depends on the inclination but is never sufficient to prevent the binary orbit from contracting. Our results may be applied to accretion on to protostars, pollution of stars in globular and nuclear clusters, and wind mass transfer in multiple stellar systems.

Funder

STFC

Netherlands Organisation for Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3