Renormalization of linear halo bias in N-body simulations

Author:

Werner Kim F1,Porciani Cristiano1

Affiliation:

1. Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany

Abstract

ABSTRACT The interpretation of redshift surveys requires modelling the relationship between large-scale fluctuations in the observed number density of tracers, δh, and the underlying matter density, δ. Bias models often express δh as a truncated series of integro-differential operators acting on δ, each weighted by a bias parameter. Due to the presence of ‘composite operators’ (obtained by multiplying fields evaluated at the same spatial location), the linear bias parameter measured from clustering statistics does not coincide with that appearing in the bias expansion. This issue can be cured by re-writing the expansion in terms of ‘renormalized’ operators. After providing a pedagogical and comprehensive review of bias renormalization in perturbation theory, we generalize the concept to non-perturbative dynamics and successfully apply it to dark-matter haloes extracted from a large suite of N-body simulations. When comparing numerical and perturbative results, we highlight the effect of the window function employed to smooth the random fields. We then measure the bias parameters as a function of halo mass by fitting a non-perturbative bias model (both before and after applying renormalization) to the cross spectrum $P_{\delta _\mathrm{h}\delta }(k)$. Finally, we employ Bayesian model selection to determine the optimal operator set to describe $P_{\delta _\mathrm{h}\delta }(k)$ for $k\lt 0.2\, h$ Mpc−1 at redshift z = 0. We find that it includes δ, ∇2δ, δ2 and the square of the traceless tidal tensor, s2. Considering higher order terms (in δ) leads to overfitting as they cannot be precisely constrained by our data. We also notice that next-to-leading-order perturbative solutions are inaccurate for k ≳ 0.1 h Mpc−1.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3