What leads to premature upper cut-off frequencies of auroral radio emission from hot magnetic stars?

Author:

Das Barnali1ORCID,Chandra Poonam23ORCID,Petit Véronique1ORCID

Affiliation:

1. Department of Physics and Astronomy, Bartol Research Institute, University of Delaware , 217 Sharp Lab, Newark, DE 19716, USA

2. National Centre for Radio Astrophysics, Tata Institute of Fundamental Research , Pune University Campus, Pune 411007, Maharashtra, India

3. National Radio Astronomy Observatory , 520 Edgemont Road, Charlottesville, VA 22903, USA

Abstract

ABSTRACT Recently, a large number of hot magnetic stars have been discovered to produce auroral radio emission by the process of electron cyclotron maser emission (ECME). Such stars have been given the name of main-sequence radio pulse emitters (MRPs). The phenomenon characterizing MRPs is very similar to that exhibited by planets like Jupiter. However, one important aspect in which the MRPs differ from aurorae exhibited by planets is the upper cut-off frequency of the ECME spectrum. While Jupiter’s upper cut-off frequency was found to correspond to its maximum surface magnetic field strength, the same for MRPs are always found to be much smaller than the frequencies corresponding to their maximum surface magnetic field strength. In this paper, we report the wideband observations (0.4–4.0 GHz) of the MRP HD 35298 that enabled us to locate the upper cut-off frequency of its ECME spectrum. This makes HD 35298 the sixth MRP with a known constraint on the upper cut-off frequency. With this information, for the first time, we investigate into what could lead to the premature cut-off. We review the existing scenarios attempting to explain this effect, and arrive at the conclusion that none of them can satisfactorily explain all the observations. We speculate that more than one physical processes might be in play to produce the observed characteristics of ECME cut-off for hot magnetic stars. Further observations, both for discovering more hot magnetic stars producing ECME and to precisely locate the upper cut-off, will be critical to solve this problem.

Funder

Department of Atomic Energy, Government of India

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3