Importance of stable mass transfer and stellar winds for the formation of gravitational wave sources

Author:

Dorozsmai Andris1,Toonen Silvia12

Affiliation:

1. Institute of Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham , Edgbaston, Birmingham B15 2TT , UK

2. Astronomical Institute Anton Pannekoek, University of Amsterdam , Science Park 904, NL-1098 XH Amsterdam , the Netherlands

Abstract

ABSTRACT The large number of gravitational wave (GW) detections have revealed the properties of the merging black hole binary population, but how such systems are formed is still heavily debated. Understanding the imprint of stellar physics on the observable GW population will shed light on how we can use the GW data, along with other observations, to constrain the poorly understood evolution of massive binaries. We perform a parameter study on the classical isolated binary formation channel with the population synthesis code seba to investigate how sensitive the properties of the coalescing binary black hole population are on the uncertainties related to first phase of mass transfer and stellar winds. We vary five assumptions: (1) and (2) the mass transfer efficiency and the angular momentum loss during the first mass transfer phase, (3) the mass transfer stability criteria for giant donors with radiative envelopes, (4) the effective temperature at which an evolved star develops a deep convective envelope, and (5) the mass-loss rates of stellar winds. We find that current uncertainties related to first phase of mass transfer have a huge impact on the relative importance of different dominant channels, while the observable demographics of GW sources are not significantly affected. Our varied parameters have a complex, interrelated effect on the population properties of GW sources. Therefore, inference of massive binary physics from GW data alone remains extremely challenging, given the large uncertainties in our current models.

Funder

NWO

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fate of supernova progenitors in massive binary systems;Monthly Notices of the Royal Astronomical Society;2024-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3