Simulating cosmic structure formation with the gadget-4 code

Author:

Springel Volker1ORCID,Pakmor Rüdiger1ORCID,Zier Oliver1,Reinecke Martin1

Affiliation:

1. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85740 Garching bei München, Germany

Abstract

ABSTRACT Numerical methods have become a powerful tool for research in astrophysics, but their utility depends critically on the availability of suitable simulation codes. This calls for continuous efforts in code development, which is necessitated also by the rapidly evolving technology underlying today’s computing hardware. Here, we discuss recent methodological progress in the gadget code, which has been widely applied in cosmic structure formation over the past two decades. The new version offers improvements in force accuracy, in time-stepping, in adaptivity to a large dynamic range in time-scales, in computational efficiency, and in parallel scalability through a special MPI/shared-memory parallelization and communication strategy, and a more-sophisticated domain decomposition algorithm. A manifestly momentum conserving fast multipole method (FMM) can be employed as an alternative to the one-sided TreePM gravity solver introduced in earlier versions. Two different flavours of smoothed particle hydrodynamics, a classic entropy-conserving formulation and a pressure-based approach, are supported for dealing with gaseous flows. The code is able to cope with very large problem sizes, thus allowing accurate predictions for cosmic structure formation in support of future precision tests of cosmology, and at the same time is well adapted to high dynamic range zoom-calculations with extreme variability of the particle number density in the simulated volume. The gadget-4 code is publicly released to the community and contains infrastructure for on-the-fly group and substructure finding and tracking, as well as merger tree building, a simple model for radiative cooling and star formation, a high dynamic range power spectrum estimator, and an initial condition generator based on second-order Lagrangian perturbation theory.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3