Centrifugal acceleration of protons by a supermassive black hole

Author:

Istomin Ya N12,Gunya A A1

Affiliation:

1. P.N. Lebedev Physical Institute, Leninsky Prospect 53, Moscow 119991, Russia

2. Moscow Institute Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow region 141700, Russia

Abstract

ABSTRACT Centrifugal acceleration is due to the rotating poloidal magnetic field in the magnetosphere that creates the electric field which is orthogonal to the magnetic field. Charged particles with finite cyclotron radii can move along the electric field and receive energy. Centrifugal acceleration pushes particles to the periphery, where their azimuthal velocity reaches the speed of light. We calculated particle trajectories by numerical and analytical methods. The maximum obtained energies depend on the parameter of the particle magnetization κ, which is the ratio of rotation frequency of magnetic field lines in the magnetosphere ΩF to non-relativistic cyclotron frequency of particles ωc, κ = ΩF/ωc <<1, and on the parameter α which is the ratio of toroidal magnetic field BT to the poloidal one BP, α = BT/BP. It is shown that for small toroidal fields, α < κ1/4, the maximum Lorentz factor γm is only the square root of magnetization, γm = κ−1/2, while for large toroidal fields, α > κ1/4, the energy increases significantly, γm = κ−2/3. However, the maximum possible acceleration, γm = κ−1, is not achieved in the magnetosphere. For a number of active galactic nuclei, such as M87, maximum values of Lorentz factor for accelerated protons are found. Also, for special case of Sgr. A*, estimations of the maximum proton energy and its energy flux are obtained. They are in agreement with experimental data obtained by HESS Cherenkov telescope.

Funder

Russian Foundation for Basic Research

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3