Impact of radial truncation on global 2D hydrodynamic simulations for a Sun-like model

Author:

Vlaykov D G1ORCID,Baraffe I12,Constantino T1,Goffrey T3,Guillet T1ORCID,Le Saux A12,Morison A1,Pratt J4ORCID

Affiliation:

1. Physics and Astronomy, University of Exeter , Stocker Road, Exeter EX4 4QL, UK

2. École Normale Supérieure, Lyon, CRAL (UMR CNRS 5574), Université de Lyon , F-69342, France

3. Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick , Coventry CV4 7AL, UK

4. Department of Physics and Astronomy, Georgia State University , Atlanta, GA 30303, USA

Abstract

ABSTRACT Stellar convection is a non-local process responsible for the transport of heat and chemical species. It can lead to enhanced mixing through convective overshooting and excitation of internal gravity waves (IGWs) at convective boundaries. The relationship between these processes is still not well understood and requires global hydrodynamic simulations to capture the important large-scale dynamics. The steep stratification in stellar interiors suggests that the radial extent of such simulations can affect the convection dynamics, the IGWs in the stably stratified radiative zone, and the depth of the overshooting layer. We investigate these effects using 2D global simulations performed with the fully compressible stellar hydrodynamics code music. We compare eight different radial truncations of the same solar-like stellar model evolved over approximately 400 convective turnover times. We find that the location of the inner boundary has an insignificant effect on the convection dynamics, the convective overshooting, and the travelling IGWs. We relate this to the background conditions at the lower convective boundary which are unaffected by the truncation, as long as a significantly deep radiative layer is included in the simulation domain. However, we find that extending the outer boundary by only a few per cent of the stellar radius significantly increases the velocity and temperature perturbations in the convection zone, the overshooting depth, the power and the spectral slope of the IGWs. The effect is related to the background conditions at the outer boundary, which are determined in essence by the hydrostatic stratification and the given luminosity.

Funder

European Research Council

Science and Technology Facilities Council

University of Leicester

STFC

Department for Business, Energy and Industrial Strategy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D hydrodynamics simulations of internal gravity waves in red giant branch stars;Monthly Notices of the Royal Astronomical Society;2023-04-14

2. Two-dimensional simulations of internal gravity waves in a 5 M⊙ zero-age-main-sequence model;Monthly Notices of the Royal Astronomical Society;2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3