Runaway and walkaway stars from the ONC with Gaia DR2

Author:

Schoettler Christina12ORCID,de Bruijne Jos2ORCID,Vaher Eero23,Parker Richard J1

Affiliation:

1. Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

2. Science Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC) Keplerlaan 1, NL-2201 AZ Noordwijk, the Netherlands

3. Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund, Sweden

Abstract

ABSTRACT Theory predicts that we should find fast, ejected (runaway) stars of all masses around dense, young star-forming regions. N-body simulations show that the number and distribution of these ejected stars could be used to constrain the initial spatial and kinematic substructure of the regions. We search for runaway and slower walkaway stars within 100 pc of the Orion Nebula Cluster (ONC) using Gaia DR2 astrometry and photometry. We compare our findings to predictions for the number and velocity distributions of runaway stars from simulations that we run for 4 Myr with initial conditions tailored to the ONC. In Gaia DR2, we find 31 runaway and 54 walkaway candidates based on proper motion, but not all of these are viable candidates in three dimensions. About 40 per cent are missing radial velocities, but we can trace back nine 3D runaways and 24 3D walkaways to the ONC, all of which are low/intermediate mass (<8 M⊙). Our simulations show that the number of runaways within 100 pc decreases the older a region is (as they quickly travel beyond this boundary), whereas the number of walkaways increases up to 3 Myr. We find fewer walkaways in Gaia DR2 than the maximum suggested from our simulations, which may be due to observational incompleteness. However, the number of Gaia DR2 runaways agrees with the number from our simulations during an age of ∼1.3–2.4 Myr, allowing us to confirm existing age estimates for the ONC (and potentially other star-forming regions) using runaway stars.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effect of dynamical interactions in stellar birth environments on the orbits of young close-in planetary systems;Monthly Notices of the Royal Astronomical Society;2024-08-06

2. A Catalog of Early-type Runaway Stars from LAMOST DR8;The Astrophysical Journal Supplement Series;2024-06-01

3. The dynamical evolution of star-forming regions measured with INDICATE;Monthly Notices of the Royal Astronomical Society;2024-02-15

4. Discovery of Two Different Full Disk Evolutionary Patterns of M-type T Tauri Stars with LAMOST DR8;The Astrophysical Journal;2023-12-22

5. Finding the dispersing siblings of young open clusters;Astronomy & Astrophysics;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3