SpaceHub: A high-performance gravity integration toolkit for few-body problems in astrophysics

Author:

Wang Yi-Han1ORCID,Leigh Nathan W C23,Liu Bin45,Perna Rosalba16

Affiliation:

1. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

2. Departamento de Astronomia, Facultad de Ciencias Fisicas y Matematicas, Universidad de Concepcion, Concepcion, Chile

3. Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024, USA

4. Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

5. Cornell Center for Astrophysics and Planetary Science, Department of Astronomy, Cornell University, Ithaca, NY 14853, USA

6. Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

Abstract

ABSTRACT We present the open source few-body gravity integration toolkit SpaceHub. SpaceHub offers a variety of algorithmic methods, including the unique algorithms AR-Radau, AR-Sym6, AR-ABITS, and AR-chain+ which we show outperform other methods in the literature and allow for fast, precise, and accurate computations to deal with few-body problems ranging from interacting black holes to planetary dynamics. We show that AR-Sym6 and AR-chain+, with algorithmic regularization, chain algorithm, active round-off error compensation and a symplectic kernel implementation, are the fastest and most accurate algorithms to treat black hole dynamics with extreme mass ratios, extreme eccentricities, and very close encounters. AR-Radau, the first regularized Radau integrator with round off error control down to 64 bits floating point machine precision, has the ability to handle extremely eccentric orbits and close approaches in long-term integrations. AR-ABITS, a bit efficient arbitrary precision method, achieves any precision with the least CPU cost compared to other open source arbitrary precision few-body codes. With the implementation of deep numerical and code optimization, these new algorithms in SpaceHub prove superior to other popular high precision few-body codes in terms of performance, accuracy, and speed.

Funder

Horizon 2020 Framework Programme

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3