Extracting galaxy merger timescales I: Tracking haloes with WhereWolf and spinning orbits with OrbWeaver

Author:

Poulton Rhys J J12,Power Chris12ORCID,Robotham Aaron S G12ORCID,Elahi Pascal J12ORCID

Affiliation:

1. International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

2. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)

Abstract

Abstract Hierarchical models of structure formation predict that dark matter halo assembly histories are characterised by episodic mergers and interactions with other haloes. An accurate description of this process will provide insights into the dynamical evolution of haloes and the galaxies that reside in them. Using large cosmological N-body simulations, we characterise halo orbits to study the interactions between substructure haloes and their hosts, and how different evolutionary histories map to different classes of orbits. We use two new software tools - WhereWolf, which uses halo group catalogues and merger trees to ensure that haloes are tracked accurately in dense environments, and OrbWeaver, which quantifies each halo’s orbital parameters. We demonstrate how WhereWolf improves the accuracy of halo merger trees, and we use OrbWeaver to quantify orbits of haloes. We assess how well analytical prescriptions for the merger timescale from the literature compare to measured merger timescales from our simulations and find that existing prescriptions perform well, provided the ratio of substructure-to-host mass is not too small. In the limit of small substructure-to-host mass ratio, we find that the prescriptions can overestimate the merger timescales substantially, such that haloes are predicted to survive well beyond the end of the simulation. This work highlights the need for a revised analytical prescription for the merger timescale that more accurately accounts for processes such as catastrophic tidal disruption.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3