From cores to stars: searching for a universal rule for star formation

Author:

Houghton Rebecca J1ORCID,Goodwin Simon P1

Affiliation:

1. Department of Physics and Astronomy, The University of Sheffield , Hounsfield Rd, Sheffield S3 7RH , UK

Abstract

ABSTRACT Star formation is generally considered to be ‘universal’, meaning that it is statistically the same everywhere (and at all times). We investigate whether it is possible to find a simple rule for the conversion of molecular cores into bound stellar systems, along with the resulting secular decay and dynamical destruction of these systems, which can match the field initial mass functions (IMFs) and multiplicity statistics. We find that extreme cases, in which the core fragmentation is self-similar or has a strong dependence on initial core mass, cannot reproduce the observations of the field. However, a model in which core fragmentation is fairly weakly dependent on core mass has some success, if we include the effects of secular decay on the multiplicity statistics. This model both fits the IMF well and has an overabundance of low-mass binary systems over the field that matches local star-forming regions. However, it is unclear whether this overabundance could be dynamically processed to match the field.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3