A NuSTAR confirmation of the 36 ks hard X-ray pulse-phase modulation in the magnetar 1E 1547.0 − 5408

Author:

Makishima Kazuo123,Enoto Teruaki4,Yoneda Hiroki3,Odaka Hirokazu2

Affiliation:

1. Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8683, Japan

2. Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3. High Energy Astrophysics Laboratory, and MAXI Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

4. Extreme Natural Phenomena RIKEN Hakubi Research Team, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Abstract

ABSTRACT This paper describes an analysis of the NuSTAR data of the fastest-rotating magnetar 1E 1547 − 5408, acquired in 2016 April for a time lapse of 151 ks. The source was detected with a 1–60 keV flux of 1.7 × 10−11 erg s−1 cm−2, and its pulsation at a period of 2.086710(5) s. In 8–25 keV, the pulses were phase-modulated with a period of T = 36.0 ± 2.3 ks, and an amplitude of ∼0.2 s. This reconfirms the Suzaku discovery of the same effect at $T=36.0 ^{+4.5}_{-2.5}$ ks, made in the 2009 outburst. These results strengthen the view derived from the Suzaku data, that this magnetar performs free precession as a result of its axial deformation by ∼0.6 × 10−4, possibly caused by internal toroidal magneti fields (MFs) reaching ∼1016 G. Like in the Suzaku case, the modulation was not detected in energies below ∼8 keV. Above 10 keV, the pulse-phase behaviour, including the 36 ks modulation parameters, exhibited complex energy dependencies: at ∼22 keV, the modulation amplitude increased to ∼0.5 s, and the modulation phase changed by ∼65° over 10–27 keV, followed by a phase reversal. Although the pulse significance and pulsed fraction were originally very low in >10 keV, they both increased noticeably, when the arrival times of individual photons were corrected for these systematic pulse-phase variations. Possible origins of these complex phenomena are discussed, in terms of several physical processes that are specific to ultrastrong MFs.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3