Radiative transfer of hydrogen lines from supernova remnant shock waves: contributions of 2s-state hydrogen atoms

Author:

Shimoda Jiro12,Laming J Martin3

Affiliation:

1. Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan

2. Astronomical Institute, Tohoku University, Sendai 980-8578, Japan

3. Space Science Division Code 7684, Naval Research Laboratory, Washington, DC 20375, USA

Abstract

Abstract Radiative transfer in hydrogen lines in supernova remnant (SNR) shock waves is studied taking into account the population of the hydrogen atom 2s-state. Measurements of Balmer line emission, especially of H α, are often relied on to derive physical conditions in the SNR shock. On the other hand, Lyman series photons, especially Ly β, are mostly absorbed by upstream hydrogen atoms. As a result, atoms are excited to the 3p state, and then emit H α by the spontaneous transition from 3p to 2s. Thus, the nature of H α depends on how many Ly β photons are converted to H α photons. Moreover, the Balmer lines can be scattered by the 2s-state hydrogen atoms, which are excited not only by collisional excitation but also by the Lyman–Balmer conversion. It is shown for example that the H α photons are scattered if the shock propagates into an H i cloud with a density of ∼30 cm−3 and a size of ∼1 pc. We find that the line profile of H α becomes asymmetric resulting from the difference between line centre frequencies among the transitions from 3s to 2p, from 3p to 2s, and from 3d to 2p. We also find that the broad-to-narrow ratio of H α, which is often used to estimate the ion-electron temperature equilibrium, varies at most ≃ 10 per cent depending on the ionization degree of the upstream medium because of incomplete conversion of Lyman lines to Balmer lines.

Funder

Japan Society for the Promotion of Science

Space Telescope Science Institute

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3