21-cm signal from the Epoch of Reionization: a machine learning upgrade to foreground removal with Gaussian process regression

Author:

Acharya Anshuman1ORCID,Mertens Florent2ORCID,Ciardi Benedetta1,Ghara Raghunath3ORCID,Koopmans Léon V E4ORCID,Giri Sambit K5ORCID,Hothi Ian26,Ma Qing-Bo78,Mellema Garrelt9ORCID,Munshi Satyapan4

Affiliation:

1. Max-Planck-Institut für Astrophysik , Garching D-85748 , Germany

2. LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université , Paris F-75014 , France

3. Astrophysics Research Centre, Open University of Israel , Ra’anana 4353701 , Israel

4. Kapteyn Astronomical Institute, University of Groningen , PO Box 800, Groningen NL-9700AV , the Netherlands

5. Nordita, KTH Royal Institute of Technology and Stockholm University , Hannes Alfvéns väg 12, Stockholm SE-10691 , Sweden

6. Laboratoire de Physique de l’ENS, ENS, Université PSL, CNRS, Sorbonne Université, Universitée Paris Cité , Paris F-75005 , France

7. School of Physics and Electronic Science, Guizhou Normal University , Guiyang 550001 , P. R. China

8. Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guizhou Normal University , Guiyang 550001 , P. R. China

9. The Oskar Klein Centre, Department of Astronomy, Stockholm University , AlbaNova, Stockholm SE-10691 , Sweden

Abstract

ABSTRACT In recent years, a Gaussian process regression (GPR)-based framework has been developed for foreground mitigation from data collected by the LOw-Frequency ARray (LOFAR), to measure the 21-cm signal power spectrum from the Epoch of Reionization (EoR) and cosmic dawn. However, it has been noted that through this method there can be a significant amount of signal loss if the EoR signal covariance is misestimated. To obtain better covariance models, we propose to use a kernel trained on the grizzly simulations using a Variational Auto-Encoder (VAE)-based algorithm. In this work, we explore the abilities of this machine learning-based kernel (VAE kernel) used with GPR, by testing it on mock signals from a variety of simulations, exploring noise levels corresponding to ≈10 nights (≈141 h) and ≈100 nights (≈1410 h) of observations with LOFAR. Our work suggests the possibility of successful extraction of the 21-cm signal within 2σ uncertainty in most cases using the VAE kernel, with better recovery of both shape and power than with previously used covariance models. We also explore the role of the excess noise component identified in past applications of GPR and additionally analyse the possibility of redshift dependence on the performance of the VAE kernel. The latter allows us to prepare for future LOFAR observations at a range of redshifts, as well as compare with results from other telescopes.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3