Modelling the secular evolution of protoplanetary disc dust sizes – a comparison between the viscous and magnetic wind case

Author:

Zagaria Francesco1ORCID,Rosotti Giovanni P23ORCID,Clarke Cathie J1,Tabone Benoît4ORCID

Affiliation:

1. Institute of Astronomy, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UK

2. School of Physics and Astronomy, University of Leicester , Leicester LE1 7RH, UK

3. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden, the Netherlands

4. Institut d’Astrophysique Spatiale, Université Paris-Saclay, CNRS , F-91405 Orsay, France

Abstract

ABSTRACT For many years, protoplanetary discs have been thought to evolve viscously: angular momentum redistribution leads to accretion and outward disc spreading. Recently, the hypothesis that accretion is due, instead, to angular momentum removal by magnetic winds gained new popularity: no disc spreading is expected in this case. In this paper, we run several 1D gas and dust simulations to make predictions on the time evolution of disc sizes in the dust and to assess whether they can be used to understand how discs evolve. We show that viscous and magnetic wind models have very different dust disc radii. In particular, magnetohydrodynamic wind models are compact and their sizes either remain constant or decrease with time. On the contrary, discs become larger with time in the viscous case (when α ≳ 10−3). Although current observations lack enough sensitivity to discriminate between these two scenarios, higher sensitivity surveys could be fruitful to this goal on a $1\!-\!10\, {\rm Myr}$ age range. When compared with the available ALMA (Atacama Large Millimeter/submillimeter Array) Band 7 data, both viscous and magnetic wind models are compatible with the observationally inferred dust radii in Lupus, Chamaeleon I, and Upper Sco. Furthermore, in the drift-dominated regime, the size–luminosity correlation is reproduced in Lupus, both in Band 7 and 3, while in Upper Sco a different slope than in the data is predicted. Sub-structures (potentially undetected) can explain several outliers with large observed sizes. Higher angular-resolution observations will be helpful to test our predictions in the case of more compact discs, expected in both frameworks, particularly at the age of Upper Sco.

Funder

STFC

Cambridge Trust

Netherlands Organisation for Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3