Affiliation:
1. Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China
2. School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
Abstract
ABSTRACT
Observationally, the X-ray spectrum (0.5–10 keV) of low-level accreting neutron stars (NSs) ($L_{\rm 0.5{-}10\,\rm kev}\lesssim 10^{36}\ \rm erg \ s^{-1}$) can generally be well fitted by the model with two components, i.e., a thermal soft X-ray component plus a power-law component. Meanwhile, the fractional contribution of the power-law luminosity η ($\eta \equiv L^{\rm power\ law}_{\rm 0.5{-}10\,\rm kev}/L_{\rm 0.5{-}10\,\rm kev}$) varies with the X-ray luminosity $L_{\rm 0.5{-}10\,\rm kev}$. In this paper, we systematically investigate the origin of such X-ray emission within the framework of the advection-dominated accretion flow (ADAF) around a weakly magnetized NS, in which the thermal soft X-ray component arises from the surface of the NS and the power-law component arises from the ADAF itself. We test the effects of the viscosity parameter α in the ADAF and thermalized parameter fth (describing the fraction of the ADAF energy released at the surface of the NS as thermal emission) on the relation of η versus $L_{\rm 0.5{-}10\,\rm kev}$. It is found that η is nearly a constant (∼zero) with $L_{\rm 0.5{-}10\,\rm kev}$ for different α with fth = 1, which is inconsistent with observations. Meanwhile, it is found that a change of fth can significantly change the relation of η versus $L_{\rm 0.5{-}10\,\rm kev}$. By comparing with a sample of non-pulsating NS-low mass X-ray binaries probably dominated by low-level accretion on to NSs, it is found that a small value of fth ≲ 0.1 is needed to match the observed range of $\eta \gtrsim 10{{\ \rm per\ cent}}$ in the diagram of η versus $L_{\rm 0.5{-}10\,\rm kev}$. Finally, we argue that the small value of fth ≲ 0.1 implies that the radiative efficiency of NSs with an ADAF accretion may not be as high as the predicted result previously of $\epsilon \sim {\dot{M} GM\over R_{*}}/{\dot{M} c^2}\sim 0.2$ despite the existence of the hard surface.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
National Program on Key Research and Development Project
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献