Examining quasar absorption-line analysis methods: the tension between simulations and observational assumptions key to modelling clouds

Author:

Marra Rachel1,Churchill Christopher W1,Kacprzak Glenn G23ORCID,Nielsen Nikole M23ORCID,Trujillo-Gomez Sebastian4ORCID,Lewis Emmy A15

Affiliation:

1. Department of Astronomy, New Mexico State University , Las Cruces, NM 88003 , USA

2. Centre for Astrophysics and Supercomputing, Swinburne University of Technology , Hawthorn, Victoria 3122 , Australia

3. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) , Hawthorn, Victoria, 3122 , Australia

4. Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg , Monchhofstraße 12–14, D-69120 Heidelberg , Germany

5. Department of Mathematics, Cornell University , Ithaca, NY 14850 , USA

Abstract

ABSTRACT A key assumption in quasar absorption-line studies of the circumgalactic medium (CGM) is that each absorption component maps to a spatially isolated ‘cloud’ structure that has single valued properties (e.g. density, temperature, metallicity). We aim to assess and quantify the degree of accuracy underlying this assumption. We used adaptive mesh refinement hydrodynamic cosmological simulations of two z = 1 dwarf galaxies and generated synthetic quasar absorption-line spectra of their CGM. For the Si ii λ1260 transition, and the C iv λλ1548, 1550 and O vi λλ1031, 1037 fine-structure doublets, we objectively determined which gas cells along a line of sight (LOS) contribute to detected absorption. We implemented a fast, efficient, and objective method to define individual absorption components in each absorption profile. For each absorption component, we quantified the spatial distribution of the absorbing gas. We studied a total of 1302 absorption systems containing a total of 7755 absorption components. 48  per cent of Si ii, 68  per cent of C iv, and 72  per cent of O vi absorption components arise from two or more spatially isolated ‘cloud’ structures along the LOS. Spatially isolated ‘cloud’ structures were most likely to have cloud–cloud LOS separations of 0.03Rvir (1.3 kpc), 0.11Rvir (4.8 kpc), and 0.13Rvir (5.6 kpc) for Si ii, C iv, and O vi, respectively. There can be very little overlap between multiphase gas structures giving rise to absorption components. If our results reflect the underlying reality of how absorption lines record CGM gas, they place tension on current observational analysis methods as they suggest that component-by-component absorption-line formation is more complex than is assumed and applied for chemical-ionization modelling.

Funder

National Science Foundation

Australian Research Council

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3