The relativistic jet dichotomy and the end of the blazar sequence

Author:

Keenan Mary1,Meyer Eileen T1ORCID,Georganopoulos Markos12,Reddy Karthik1ORCID,French Omar J1

Affiliation:

1. Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA

2. NASA Goddard Space Flight Center, Code 663, Greenbelt, MD 20771, USA

Abstract

ABSTRACT Our understanding of the unification of jetted AGN has evolved greatly as jet samples have increased in size. Here, based on the largest-ever sample of over 2000 well-sampled jet spectral energy distributions, we examine the synchrotron peak frequency – peak luminosity plane, and find little evidence for the anticorrelation known as the blazar sequence. Instead, we find strong evidence for a dichotomy in jets, between those associated with efficient or ‘quasar-mode’ accretion (strong/type II jets) and those associated with inefficient accretion (weak/type I jets). Type II jets include those hosted by high-excitation radio galaxies, flat-spectrum radio quasars (FSRQ), and most low-frequency-peaked BL Lac objects. Type I jets include those hosted by low-excitation radio galaxies and blazars with synchrotron peak frequency above 1015 Hz (nearly all BL Lac objects). We have derived estimates of the total jet power for over 1000 of our sources from low-frequency radio observations, and find that the jet dichotomy does not correspond to a division in jet power. Rather, type II jets are produced at all observed jet powers, down to the lowest levels in our sample, while type I jets range from very low to moderately high jet powers, with a clear upper bound at L 300MHz ∼1043 erg s−1. The range of jet power in each class matches exactly what is expected for efficient (i.e. a few to 100 % Eddington) or inefficient ( <0.5% Eddington) accretion on to black holes ranging in mass from $10^7{\, {\rm to}\,}10^{9.5}\, {\rm M}_\odot$.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3