Identifying blue large amplitude pulsators from Gaia DR2 and ZTF DR3

Author:

McWhirter Paul Ross123ORCID,Lam Marco C4ORCID

Affiliation:

1. Astrophysics Research Institute, Liverpool John Moores University , IC2, LSP, 146 Brownlow Hill, Liverpool L3 5RF, UK

2. Instituto de Astrofísica de Canarias (IAC) , Calle Vía Láctea s/n, E-38200 La Laguna, Tenerife, Spain

3. Universidad de La Laguna, Dept. Astrofísica , E-38206 La Laguna, Tenerife, Spain

4. School of Physics and Astronomy, Tel Aviv University , Tel Aviv 69978, Israel

Abstract

ABSTRACT Blue large amplitude pulsators (BLAPs) are hot, subluminous stars undergoing rapid variability with periods of under 60 min. They have been linked with the early stages of pre-white dwarfs and hot subdwarfs. They are a rare class of variable star due to their evolutionary history within interacting binary systems and the short time-scales relative to their lifetime in which they are pulsationally unstable. All currently known BLAPs are relatively faint (15–19 mag) and are located in the Galactic plane. These stars have intrinsically blue colours but the large interstellar extinction in the Galactic plane prevents them from swift identification using colour-based selection criteria. In this paper, we correct the Gaia G-band apparent magnitude and GBP − GRP colours of 89.6 million sources brighter than 19 mag in the Galactic plane with good quality photometry combined with supplementary all-sky data totalling 162.3 million sources. Selecting sources with colours consistent with the known population of BLAPs and performing a cross-match with the Zwicky Transient Facility (ZTF) DR3, we identify 98 short period candidate variables. Manual inspection of the period-folded light curves reveals 22 candidate BLAPs. Of these targets, 6 are consistent with the observed periods and light curves of the known BLAPs, 10 are within the theoretical period range of BLAPs, and 6 are candidate high-gravity BLAPs. We present follow-up spectra of 21 of these candidate sources and propose to classify one of them as a BLAP, and tentatively assign an additional eight of them as BLAPs for future population studies.

Funder

STFC

European Research Council

National Science Foundation

University of Maryland

University of Washington

Deutsches Elektronen-Synchrotron

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3