A semi-analytical model for the propagation of a relativistic jet in a magnetized medium

Author:

García-García Leonardo1ORCID,López-Cámara Diego2ORCID,Lazzati Davide3ORCID

Affiliation:

1. Instituto de Astronomía, Universidad Nacional Autónoma de México , 04510 , Ciudad de México, CDMX, México

2. Investigador por México, CONAHCyT – Universidad Nacional Autónoma de México, Instituto de Astronomía , AP 70-264, CDMX 04510 , México

3. Department of Physics, Oregon State University , 301 Weniger Hall, Corvallis, OR 97331 , USA

Abstract

ABSTRACT The merger of two magnetized compact objects, such as neutron stars, forms a compact object which may launch a relativistic and collimated jet. Numerical simulations of the process show that a dense and highly magnetized medium surrounds the system. This study presents a semi-analytical model that models the effects that a static magnetized medium with a tangled field produces in relativistic, collimated, and non-magnetized jets. The model is a first approximation that addresses the magnetic field present in the medium and is based on pressure equilibrium principles between the jet, cocoon, and external medium. A fraction of the ambient medium field is allowed to be entrained in the cocoon. We find that the jet and cocoon properties may be affected by high magnetic fields (≳ 1015 G) and mixing. The evolution of the system may vary up to $\sim 10{{\ \rm per\ cent}}$ (compared to the non-magnetized case). Low-mixing may produce a slower broader jet with a broader and more energetic cocoon would be produced. On the other hand, high-mixing could produce a faster narrower jet with a narrow and less-energetic cocoon. Two-dimensional hydrodynamical simulations are used to validate the model and to constrain the mixing parameter. Although the magnetic field and mixing have a limited effect, our semi-analytic model captures the general trend consistent with numerical results. For high magnetization, the results were found to be more consistent with the low mixing case in our semi-analytic model.

Funder

NSF

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3