Affiliation:
1. Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
Abstract
ABSTRACT
Gas metallicity (Z) and the related dust-to-gas ratio (fd) can influence the growth of H ii regions via metal line cooling and ultraviolet (UV) absorption. We model these effects in star-forming regions containing massive stars. We compute stellar feedback from photoionization and radiation pressure (RP) using Monte Carlo radiative transfer coupled with hydrodynamics, including stellar and diffuse radiation fields. We follow a $10^{5}\, \mathrm{M}_{\odot }$ turbulent cloud with Z/Z⊙ = 2, 1, 0.5, and 0.1, and $f_\textrm{d} = 0.01\, Z/Z_{\odot }$ with a cluster-sink particle method for star formation. The models evolve for at least 1.5 Myr under feedback. Lower Z results in higher temperatures and therefore larger H ii regions. For Z ≥ Z⊙, RP (Prad) can dominate locally over the gas pressure (Pgas) in the inner half-parsec around sink particles. Globally, the ratio of Prad/Pgas is around 1 (2 Z⊙), 0.3 (Z⊙), 0.1 (0.5 Z⊙), and 0.03 (0.1 Z⊙). In the solar model, excluding RP results in an ionized volume several times smaller than the fiducial model with both mechanisms. Excluding RP and UV attenuation by dust results in a larger ionized volume than the fiducial case. That is, UV absorption hinders growth more than RP helps it. The radial expansion velocity of ionized gas reaches +15 km s−1 outwards, while neutral gas has inward velocities for most of the runtime, except for 0.1 Z⊙ that exceeds +4 km s−1. Z and fd do not significantly alter the star formation efficiency, rate, or cluster half-mass radius, with the exception of 0.1 Z⊙ due to the earlier expulsion of neutral gas.
Funder
European Research Council
STFC
Durham University
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献