r-mode instability of neutron stars in Low-mass X-ray binaries: effects of Fermi surface depletion and superfluidity of dense matter

Author:

Dong J M12

Affiliation:

1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

2. School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract The nucleon-nucleon correlation between nucleons leads to the Fermi surface depletion measured by a Z-factor in momentum distribution of dense nuclear matter. The roles of the Fermi surface depletion effect (Z-factor effect) and its quenched neutron triplet superfluidity of nuclear matter in viscosity and hence in the gravitational-wave-driven r-mode instability of neutron stars (NSs) are investigated. The bulk viscosity is reduced by both the two effects, especially the superfluid effect at low temperatures which is also able to reduce the inferred core temperature of NSs. Intriguingly, due to the neutron superfluidity, the core temperature of the NSs in known low-mass X-ray binaries (LMXBs) are found to be clearly divided into two groups: high and low temperatures which correspond to NSs with short and long recurrence times for nuclear-powered bursts respectively. Yet, a large number of NSs in these LMXBs are still located in the r-mode instability region. If the density-dependent symmetry energy is stiff enough, the occurence of direct Urca process reduces the inferred core temperature by about one order of magnitude. Accordingly, the contradiction between the predictions and observations is alleviated to some extent, but some NSs are still located inside the unstable region.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3