Photometric identification of compact galaxies, stars, and quasars using multiple neural networks

Author:

Chaini Siddharth1ORCID,Bagul Atharva1ORCID,Deshpande Anish2,Gondkar Rishi3,Sharma Kaushal4ORCID,Vivek M5,Kembhavi Ajit6

Affiliation:

1. Department of Physics, Indian Institute of Science Education and Research , Bhopal 462066, India

2. Department of Computer Science Engineering, Indian Institute of Technology , Bombay 400076, India

3. Department of Computer Science, Pune Institute of Computer Technology , Pune 411043, India

4. Millennium Institute of Astrophysics (MAS) , Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile

5. Indian Institute of Astrophysics , Koramangala, Bengaluru 560034, India

6. Inter University Centre for Astronomy and Astrophysics (IUCAA) , Pune 411007, India

Abstract

ABSTRACT We present MargNet, a deep learning-based classifier for identifying stars, quasars, and compact galaxies using photometric parameters and images from the Sloan Digital Sky Survey Data Release 16 catalogue. MargNet consists of a combination of convolutional neural network and artificial neural network architectures. Using a carefully curated data set consisting of 240 000 compact objects and an additional 150 000 faint objects, the machine learns classification directly from the data, minimizing the need for human intervention. MargNet is the first classifier focusing exclusively on compact galaxies and performs better than other methods to classify compact galaxies from stars and quasars, even at fainter magnitudes. This model and feature engineering in such deep learning architectures will provide greater success in identifying objects in the ongoing and upcoming surveys, such as Dark Energy Survey and images from the Vera C. Rubin Observatory.

Funder

IISER Bhopal

DST

SERB

Alfred P. Sloan Foundation

U.S. Department of Energy

University of Utah

Carnegie Mellon University

Johns Hopkins University

University of Tokyo

Lawrence Berkeley National Laboratory

New Mexico State University

New York University

University of Notre Dame

MCTI

Ohio State University Press

Pennsylvania State University

Universidad Nacional Autónoma de México

University of Arizona

University of Colorado Boulder

University of Portsmouth

University of Virginia

University of Washington

Vanderbilt University

Yale University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3