Inelastic rate coefficients for collisions of N2H+ with H2

Author:

Balança Christian1,Scribano Yohann2,Loreau Jérôme3ORCID,Lique François4,Feautrier Nicole1

Affiliation:

1. Observatoire de Paris, Université PSL, CNRS-UMR 8112, LERMA, F-92195 Meudon, France

2. Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier, France

3. KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium

4. LOMC – UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, F-76 063 Le Havre cedex, France

Abstract

ABSTRACT N2H+ is one of the first molecular ions observed in the interstellar medium and it is of particular interest to probe the physical conditions of cold molecular clouds. Accurate modelling of the observed lines requires the knowledge of collisional excitation rate coefficients. Thus, we have calculated rate coefficients for the excitation of N2H+ by H2, the most abundant collisional partner. The calculations are based on a new potential energy surface obtained from highly correlated ab initio calculations. This 4D-interaction surface exhibits a very deep well of ≈2530 cm−1 making fully converged scattering calculations very difficult to carry out, when one takes into account the rotational structure of H2. To overcome this difficulty, two approximate approaches, the adiabatic hindered rotor approach (AHR) and the statistical adiabatic channel model, were tested by comparing the results with those obtained from full 4D close-coupling calculations. The AHR treatment, which reduces the scattering calculations to a 2D problem was found to give the best results at all temperatures and even for transitions involving high N2H+ rotational levels. State-to-state rate coefficients between the 26 first N2H+ rotational levels were calculated for temperatures ranging from 5 K up to 500 K. Using a recoupling technique, rate coefficients are obtained among hyperfine transitions.

Funder

CNRS

CNES

GENCI

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3