Affiliation:
1. School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
Abstract
ABSTRACT
We present simulations of a 500 pc2 region, containing gas of mass 4 × 106 M⊙, extracted from an entire spiral galaxy simulation, scaled up in resolution, including photoionizing feedback from stars of mass >18 M⊙. Our region is evolved for 10 Myr and shows clustered star formation along the arm generating ≈ 5000 cluster sink particles ≈ 5 per cent of which contain at least one of the ≈ 4000 stars of mass >18 M⊙. Photoionization has a noticeable effect on the gas in the region, producing ionized cavities and leading to dense features at the edge of the H ii regions. Compared to the no-feedback case, photoionization produces a larger total mass of clouds and clumps, with around twice as many such objects, which are individually smaller and more broken up. After this we see a rapid decrease in the total mass in clouds and the number of clouds. Unlike studies of isolated clouds, our simulations follow the long-range effects of ionization, with some already dense gas, becoming compressed from multiple sides by neighbouring H ii regions. This causes star formation that is both accelerated and partially displaced throughout the spiral arm with up to 30 per cent of our cluster sink particle mass forming at distances >5 pc from sites of sink formation in the absence of feedback. At later times, the star formation rate decreases to below that of the no-feedback case.
Funder
Department for Business, Energy and Industrial Strategy
Science and Technology Facilities Council
H2020 European Research Council
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献