Photoionizing feedback in spiral arm molecular clouds

Author:

Bending Thomas J R1ORCID,Dobbs Clare L1,Bate Matthew R1ORCID

Affiliation:

1. School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK

Abstract

ABSTRACT We present simulations of a 500 pc2 region, containing gas of mass 4 × 106 M⊙, extracted from an entire spiral galaxy simulation, scaled up in resolution, including photoionizing feedback from stars of mass >18 M⊙. Our region is evolved for 10 Myr and shows clustered star formation along the arm generating ≈ 5000 cluster sink particles ≈ 5 per cent of which contain at least one of the ≈ 4000 stars of mass >18 M⊙. Photoionization has a noticeable effect on the gas in the region, producing ionized cavities and leading to dense features at the edge of the H ii regions. Compared to the no-feedback case, photoionization produces a larger total mass of clouds and clumps, with around twice as many such objects, which are individually smaller and more broken up. After this we see a rapid decrease in the total mass in clouds and the number of clouds. Unlike studies of isolated clouds, our simulations follow the long-range effects of ionization, with some already dense gas, becoming compressed from multiple sides by neighbouring H ii regions. This causes star formation that is both accelerated and partially displaced throughout the spiral arm with up to 30 per cent of our cluster sink particle mass forming at distances >5 pc from sites of sink formation in the absence of feedback. At later times, the star formation rate decreases to below that of the no-feedback case.

Funder

Department for Business, Energy and Industrial Strategy

Science and Technology Facilities Council

H2020 European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic fields in star-forming environments: how does field strength affect gas on spiral arm and cloud scales?;Monthly Notices of the Royal Astronomical Society;2024-06-29

2. 2a Results: galaxy to cloud scales;Frontiers in Astronomy and Space Sciences;2023-11-09

3. fried v2: a new grid of mass-loss rates for externally irradiated protoplanetary discs;Monthly Notices of the Royal Astronomical Society;2023-10-06

4. The formation of globular clusters with top-heavy initial mass functions;Monthly Notices of the Royal Astronomical Society;2023-06-30

5. Star cluster formation and feedback in different environments of a Milky Way-like galaxy;Monthly Notices of the Royal Astronomical Society;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3