Radio spectra of pulsars fitted with the spectral distribution function of the emission from their current sheet

Author:

Ardavan Houshang1ORCID

Affiliation:

1. Institute of Astronomy, University of Cambridge , Madingley Road, Cambridge CB3 0HA , UK

Abstract

ABSTRACT In their catalogue of pulsars’ radio spectra, Swainston et al. distinguish between five different forms of these spectra: those that can be fitted with (i) a simple power law, (ii) a broken power law, (iii) a low-frequency turn-over, (iv) a high-frequency turn-over or (v) a double turn-over spectrum. Here, we choose two examples from each of these categories and fit them with the spectral distribution function of the caustics that are generated by the superluminally moving current sheet in the magnetosphere of a non-aligned neutron star. In contrast to the prevailing view that the curved features of pulsars’ radio spectra arise from the absorption of the observed radiation in high-density environments, our results imply that these features are intrinsic to the emission mechanism. We find that all observed features of pulsar spectra (including those that are normally fitted with simple or broken power laws) can be described by a single spectral distribution function and regarded as manifestations of a single emission mechanism. From the results of an earlier analysis of the emission from a pulsar’s current sheet and the values of the fit parameters for each spectrum, we also determine the physical characteristics of the central neutron star of each considered example and its magnetosphere.

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3