Hierarchical clustering reveals unique features in the diel dynamics of metabolites in the CAM orchid Phalaenopsis

Author:

Ceusters Nathalie1,Luca Stijn2,Feil Regina3,Claes Johan E4,Lunn John E3ORCID,Van den Ende Wim5,Ceusters Johan16ORCID

Affiliation:

1. KU Leuven, Department of Biosystems, Division of Crop Biotechnics, Research group for Sustainable Crop Production & Protection, Campus Geel, Kleinhoefstraat, Geel, Belgium

2. Ghent University, Department of Data Analysis and Mathematical Modelling, Coupure links, Gent, Belgium

3. Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany

4. KU Leuven, Department of Microbial and Molecular systems, Bioengineering Technology TC, Campus Geel, Kleinhoefstraat, Geel, Belgium

5. KU Leuven, Department of Biology, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg, Leuven, Belgium

6. UHasselt, Centre for Environmental Sciences, Environmental Biology, Campus Diepenbeek, Agoralaan Building D, Diepenbeek, Belgium

Abstract

Abstract Crassulacean acid metabolism (CAM) is a major adaptation of photosynthesis that involves temporally separated phases of CO2 fixation and accumulation of organic acids at night, followed by decarboxylation and refixation of CO2 by the classical C3 pathway during the day. Transitory reserves such as soluble sugars or starch are degraded at night to provide the phosphoenolpyruvate (PEP) and energy needed for initial carboxylation by PEP carboxylase. The primary photosynthetic pathways in CAM species are well known, but their integration with other pathways of central C metabolism during different phases of the diel light–dark cycle is poorly understood. Gas exchange was measured in leaves of the CAM orchid Phalaenopsis ‘Edessa’ and leaves were sampled every 2 h during a complete 12-h light–12-h dark cycle for metabolite analysis. A hierarchical agglomerative clustering approach was employed to explore the diel dynamics and relationships of metabolites in this CAM species, and compare these with those in model C3 species. High levels of 3-phosphoglycerate (3PGA) in the light activated ADP-glucose pyrophosphorylase, thereby enhancing production of ADP-glucose, the substrate for starch synthesis. Trehalose 6-phosphate (T6P), a sugar signalling metabolite, was also correlated with ADP-glucose, 3PGA and PEP, but not sucrose, over the diel cycle. Whether or not this indicates a different function of T6P in CAM plants is discussed. T6P levels were low at night, suggesting that starch degradation is regulated primarily by circadian clock-dependent mechanisms. During the lag in starch degradation at dusk, carbon and energy could be supplied by rapid consumption of a large pool of aconitate that accumulates in the light. Our study showed similarities in the diel dynamics and relationships between many photosynthetic metabolites in CAM and C3 plants, but also revealed some major differences reflecting the specialized metabolic fluxes in CAM plants, especially during light–dark transitions and at night.

Funder

Research Fund KU Leuven

Max Planck Society

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3