Affiliation:
1. Department of Genetics, North Carolina State University, Raleigh, N.C. 27650
Abstract
ABSTRACT
The mechanical power imparted to the wings during tethered flight of Drosophila melanogaster is estimated from wing-beat frequency, wing-stroke amplitude and various aspects of wing morphology by applying the steady-state aerodynamics model of insect flight developed by Weis-Fogh (1972, 1973). Wing-beat frequency, the major determinant of power output, is highly correlated with the rate of oxygen consumption. Estimates of power generated during flight should closely reflect rates of ATP production in the flight muscles, since flies do not acquire an oxygen debt or accumulate ATP during flight. In an experiment using 21 chromosome 2 substitution lines, lines were a significant source of variation for all flight parameters measured. Broadsense heritabilities ranged from 0.16 for wing-stroke amplitude to 0.44 for inertial power. The variation among lines is not explained by variation in total body size (i.e., live weight). Line differences in flight parameters are robust with respect to age, ambient temperature and duration of flight. These results indicate that characterization of the power output during tethered flight will provide a sensitive experimental system for detecting the physiological effects of variation in the structure or quantity of the enzymes involved in flight metabolism.
Publisher
Oxford University Press (OUP)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献