Analysis of the Functional Significance of Linkage Group Conservation in Drosophila

Author:

Hilliker Arthur J1,Trusis-Coulter Silvija N2

Affiliation:

1. Department of Molecular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

2. Department of Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

ABSTRACT Linkage groups, as defined by chromosome arms in Drosophila melanogaster, appear to have remained largely intact within the genus Drosophila and, possibly, within the higher Diptera per se. We hypothesized that linkage group conservation might have a functional basis (possibly related to interphase chromosome arrangement). To test this hypothesis, a series of autosomal 2-3 translocations were synthesized, creating many new linkage groups. A total of 167 2-3 translocations were recovered, cytologically analyzed to determine their polytene chromosome breakpoints, and tested for homozygous viability and fertility. The breakpoints associated with homozygous viable translocations were randomly distributed throughout the genome, indicating that the linear continuity of the linkage groups could be disrupted quite extensively. Inter se complementation crosses between homozygous lethal translocations having similar breakpoints further confirmed this result, documenting that, at least with respect to homozygous viability, the linear integrity of the autosomal linkage groups was not of major functional significance. Fertility analysis of the homozygous translocations also indicated that sterility could not be a single major factor. Having concluded that linkage group conservation is not based on important functional interactions between specific linked chromosomal segments, or due principally to the sterility of new linkages, the problem of linkage group conservation remains unsolved. Several possible selective factors are discussed, principally segregational load and inbreeding depression, which may contribute to the elimination of new linkage rearrangements.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3