Genetic Analysis of Sunflower Domestication

Author:

Burke John M1,Tang Shunxue2,Knapp Steven J2,Rieseberg Loren H1

Affiliation:

1. Department of Biology, Indiana University, Bloomington, Indiana 47405

2. Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331

Abstract

Abstract Quantitative trait loci (QTL) controlling phenotypic differences between cultivated sunflower and its wild progenitor were investigated in an F3 mapping population. Composite interval mapping revealed the presence of 78 QTL affecting the 18 quantitative traits of interest, with 2–10 QTL per trait. Each QTL explained 3.0–68.0% of the phenotypic variance, although only 4 (corresponding to 3 of 18 traits) had effects >25%. Overall, 51 of the 78 QTL produced phenotypic effects in the expected direction, and for 13 of 18 traits the majority of QTL had the expected effect. Despite being distributed across 15 of the 17 linkage groups, there was a substantial amount of clustering among QTL controlling different traits. In several cases, regions influencing multiple traits harbored QTL with antagonistic effects, producing a cultivar-like phenotype for some traits and a wild-like phenotype for others. On the basis of the directionality of QTL, strong directional selection for increased achene size appears to have played a central role in sunflower domestication. None of the other traits show similar evidence of selection. The occurrence of numerous wild alleles with cultivar-like effects, combined with the lack of major QTL, suggests that sunflower was readily domesticated.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference55 articles.

1. Zmap—a QTL cartographer;Basten,1994

2. Teosinte and the origin of maize;Beadle;J. Hered.,1939

3. The power and deceit of QTL experiments: lesson from comparative QTL studies;Beavis,1994

4. Presentation of the Advanta sunflower RFLP linkage map for public research;Berry,1997

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3