Affiliation:
1. Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
2. Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
Abstract
Abstract
During meiosis homologous chromosomes replicate once, pair, experience recombination, and undergo two rounds of segregation to produce haploid meiotic products. The rec8+, rec10+, and rec11+ genes of the fission yeast Schizosaccharomyces pombe exhibit similar specificities for meiotic recombination and rec8+ is required for sister chromatid cohesion and homolog pairing. We applied cytological and genetic approaches to identify potential genetic interactions and to gauge the fidelity of meiotic chromosome segregation in the mutants. The rec8+ gene was epistatic to rec10+ and to rec11+, but there was no clear epistatic relationship between rec10+ and rec11+. Reciprocal (crossover) recombination in the central regions of all three chromosomes was compromised in the rec mutants, but recombination near the telomeres was nearly normal. Each of the mutants also exhibited a high rate of aberrant segregation for all three chromosomes. The rec8 mutations affected mainly meiosis I segregation. Remarkably, the rec10 and rec11 mutations, which compromised recombination during meiosis I, affected mainly meiosis II segregation. We propose that these genes encode regulators or components of a “meiotic chromatid cohesion” pathway involved in establishing, maintaining, and appropriately releasing meiotic interactions between chromosomes. A model of synergistic interactions between sister chromatid cohesion and crossover position suggests how crossovers and cohesion help ensure the proper segregation of chromosomes in each of the meiotic divisions.
Publisher
Oxford University Press (OUP)
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献