Spectrum of Chemically Induced Mutations From a Large-Scale Reverse-Genetic Screen in Arabidopsis

Author:

Greene Elizabeth A1,Codomo Christine A1,Taylor Nicholas E1,Henikoff Jorja G1,Till Bradley J1,Reynolds Steven H2,Enns Linda C2,Burtner Chris2,Johnson Jessica E2,Odden Anthony R1,Comai Luca2,Henikoff Steven13

Affiliation:

1. Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

2. Department of Biology, University of Washington, Seattle, Washington 98195

3. Howard Hughes Medical Institute, Seattle, Washington 98109

Abstract

Abstract Chemical mutagenesis has been the workhorse of traditional genetics, but it has not been possible to determine underlying rates or distributions of mutations from phenotypic screens. However, reverse-genetic screens can be used to provide an unbiased ascertainment of mutation statistics. Here we report a comprehensive analysis of ∼1900 ethyl methanesulfonate (EMS)-induced mutations in 192 Arabidopsis thaliana target genes from a large-scale TILLING reverse-genetic project, about two orders of magnitude larger than previous such efforts. From this large data set, we are able to draw strong inferences about the occurrence and randomness of chemically induced mutations. We provide evidence that we have detected the large majority of mutations in the regions screened and confirm the robustness of the high-throughput TILLING method; therefore, any deviations from randomness can be attributed to selectional or mutational biases. Overall, we detect twice as many heterozygotes as homozygotes, as expected; however, for mutations that are predicted to truncate an encoded protein, we detect a ratio of 3.6:1, indicating selection against homozygous deleterious mutations. As expected for alkylation of guanine by EMS, >99% of mutations are G/C-to-A/T transitions. A nearest-neighbor bias around the mutated base pair suggests that mismatch repair counteracts alkylation damage.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference27 articles.

1. Targeted recovery of mutations in Drosophila;Bentley;Genetics,2000

2. High-throughput screening for induced point mutations;Colbert;Plant Physiol.,2001

3. Arabidopsis MutS homologs—AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7—form three distinct protein heterodimers with different specificities for mismatched DNA;Culligan;Plant Cell,2000

4. A functional OGG1 homologue from Arabiodopsis thaliana.;Dany;Mol. Gen. Genet.,2001

Cited by 257 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3