Affiliation:
1. Department of Genetics, The Ohio State University,. Columbus, Ohio 43210 and Department of Microbiology, Universiiy College, London, England
Abstract
ABSTRACT
In wild-type Sacchromyces cerevisiae, erythromycin and certain other antibacterial antibiotics inhibit the formation of respiratory enzymes in mitochondria by inhibiting translation on mitochondrial ribosomes. This paper is concerned with the origin of mutant cells, resistant to erythromycin by virtue of having a homogeneous population of mutant mitochondrial DNA molecules. Such mutant cells are obtained by plating wild-type (sensitive) cells on a nonfermentable substrate plus the antibiotic. Colonies of mutant cells appear first about four days after the time of appearance of established mutant cells; new colonies continue to appear, often at a constant rate, for many days. Application of the NEWCOMBrEes preading experiment demonstrates that most or all of the mutant cells which form the resistant colonies on selective medium arise only after exposure of the population to erythromycin. It is suggested that this result is most probably due to intracellular selection for mitochondrial genomes. Resistant mitochondria arising from spontaneous mutatLon are postulated to be at a selective disadvantage in the absence of erythromycin; reproducing more slowly than wild-type sensitive mitochondria, they cannot easily accumulate in sufficient numbers in a cell to render it resistant as a whole. In the presence of erythromycin, resistant mitochondria can continue to reproduce while sensitive mitochondria cannot, until there is a sufficient number to make the cell resistant, i.e. to permit normal cell growth. The same phenomenon is seen with respect to chloramphenicol resistance. Intracellular selection is considered more likely than direct induction of mutation by the antibiotic, since mutant cells do not accumulate in the presence of erythromycin if the mitochondrial genome is rendered nonessential by growth on glucose or nontranslatable by chloramphenicol. Intracellular selection provides a mechanism for direct adaptation at the cell level, compatible with currently acceptable ideas of spontaneous miitation and selection at the organelle level.
Publisher
Oxford University Press (OUP)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献