The Maize Unstable factor for orange1 Is a Dominant Epigenetic Modifier of a Tissue Specifically Silent Allele of pericarp color1

Author:

Chopra Surinder12,Cocciolone Suzy M1,Bushman Shaun3,Sangar Vineet2,McMullen Michael D4,Peterson Thomas1

Affiliation:

1. Department of Zoology and Genetics and Department of Agronomy, Iowa State University, Ames, Iowa 50011

2. Department of Crop & Soil Sciences, Pennsylvania State University, University Park, Pennsylvania 16802

3. Genetics Area Program, University of Missouri, Columbia, Missouri 65211

4. Plant Genetics Research Unit, Agricultural Research Services, U.S. Department of Agriculture and the Plant Sciences Unit, University of Missouri, Columbia, Missouri 65211

Abstract

Abstract We have characterized Unstable factor for orange1 (Ufo1), a dominant, allele-specific modifier of expression of the maize pericarp color1 (p1) gene. The p1 gene encodes an Myb-homologous transcriptional activator of genes required for biosynthesis of red phlobaphene pigments. The P1-wr allele specifies colorless kernel pericarp and red cobs, whereas Ufo1 modifies P1-wr expression to confer pigmentation in kernel pericarp, as well as vegetative tissues, which normally do not accumulate significant amounts of phlobaphene pigments. In the presence of Ufo1, P1-wr transcript levels and transcription rate are increased in kernel pericarp. The P1-wr allele contains approximately six p1 gene copies present in a hypermethylated and multicopy tandem array. In P1-wr Ufo1 plants, methylation of P1-wr DNA sequences is reduced, whereas the methylation state of other repetitive genomic sequences was not detectably affected. The phenotypes produced by the interaction of P1-wr and Ufo1 are unstable, exhibiting somatic mosaicism and variable penetrance. Moreover, the changes in P1-wr expression and methylation are not heritable: meiotic segregants that lack Ufo1 revert to the normal P1-wr expression and methylation patterns. These results demonstrate the existence of a class of modifiers of gene expression whose effects are associated with transient changes in DNA methylation of specific loci.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3