Affiliation:
1. Department of Biology, National and Kapodistrian University of Athens , 15784 Athens, Greece
2. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology , 70013 Heraklion, Greece
Abstract
Abstract
An increasing number of solute transporters have been shown to function with the so-called sliding-elevator mechanism. Despite structural and functional differences, all elevator-type transporters use a common mechanism of substrate translocation via reversible movements of a mobile core domain (the elevator) hosting the substrate binding site along a rigid scaffold domain stably anchored in the plasma membrane via homodimerization. One of the best-studied elevator transporters is the UapA uric acid-xanthine/H+ symporter of the filamentous fungus Aspergillus nidulans. Here, we present a genetic analysis for deciphering the role of transmembrane segments (TMS) 5 and 12 in UapA transport function. We show that specific residues in both TMS5 and TMS12 control, negatively or positively, the dynamics of transport, but also substrate binding affinity and specificity. More specifically, mutations in TMS5 can lead not only to increased rate of transport but also to an inactive transporter due to high-affinity substrate-trapping, whereas mutations in TMS12 lead to apparently uncontrolled sliding and broadened specificity, leading in specific cases to UapA-mediated purine toxicity. Our findings shed new light on how elevator transporters function and how this knowledge can be applied to genetically modify their transport characteristics.
Funder
Hellenic Foundation for Research and Innovation
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献