Affiliation:
1. Department of Genetics, University of Helsinki, P. Rautatiekatu 13, 00100 Helsinki 10, Finland
Abstract
ABSTRACT
A new cytoplasmic male sterility in barley (Hordeum vulgare s.l.) is described and designated as msm2. The cytoplasm was derived from a selection of the wild progenitor of barley (H. vulgare ssp. spontaneum). This selection, 79BS14-3, originates from the Southern Coastal Plain of Israel. The selection 79BS14-3 has a normal spike fertility in Finland. When 79BS14-3 was crossed by cv. Adorra, the F1 displayed partial male fertility and progeny of recurrent backcrosses with cv. Adorra were completely male sterile. Evidently 79BS14-3 is a carrier of a recessive or semidominant restorer gene of fertility. The dominant restorer gene Rfm1a for another cytoplasmic male sterility, msm1, is also effective in msm2 cytoplasm. The different partial fertility restoration properties of msm2 and msm1 cause these cytoplasms to be regarded as being distinct. Seventy spontaneum accessions from Israel have been studied for their capacity to produce F1 restoration of male fertility both in msm1 and in msm2 cytoplasms with a cv. Adorra-like seed parent (nuclear gene) background. The msm2 cytoplasm shows partial restoration more commonly than msm1 in these F1 combinations. The mean restoration percentage per accession for msm2 is 28, and for msm1 4. Most of the F1 seed set differences of the two cytoplasms are statistically significant. When estimated with partially restored F1 combinations, msm2 cytoplasm appeared to be about 50 times more sensitive to the male fertility-promoting genes present in the spontaneum accessions. The spontaneum sample from Central and Western Negev, which has been found to be devoid of restoration ability in msm1 cytoplasm, had only low partial restoration ability in msm2 (mean 0.3%). The female fertility of msm2 appears normal. The new msm2 cytoplasm could be useful in producing hybrid barley.
Publisher
Oxford University Press (OUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献