Volatility Prediction Using a Realized-Measure-Based Component Model

Author:

Noureldin Diaa1

Affiliation:

1. American University in Cairo

Abstract

Abstract This article introduces a volatility model with a component structure allowing for a realized measure based on high-frequency data (e.g., realized variance) to drive the short-run volatility dynamics. In a joint model of the daily return and the realized measure, the conditional variance of the daily return has a multiplicative component structure: the first component traces long-run (secular) volatility trends, while the second component captures short-run (transitory) movements in volatility. Despite being a fixed-parameter model, its component structure implies time-varying parameters, which are “data-driven” to capture changing volatility regimes. We discuss the model dynamics and estimation by maximum likelihood. The empirical analysis reveals statistically significant out-of-sample gains compared to benchmark models, particularly for short forecast horizons and during the financial crisis.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference64 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting VIX with time-varying risk aversion;International Review of Economics & Finance;2023-11

2. Modelling Volatility Cycles: the (MF)^2 GARCH Model;SSRN Electronic Journal;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3