Thermodynamic stability of human lipocalin-type prostaglandin D synthase under various pH conditions

Author:

Iida Tsukimi12,Nakatsuji Masatoshi1,Teraoka Yoshiaki1,Goto Yuji3,Yamamura Takaki1,Inui Takashi1ORCID

Affiliation:

1. Osaka Metropolitan University Graduate School of Agriculture, , 1-1 Gakuen-cho, Naka-ku, Sakai,Osaka 599-8531, Japan

2. Tsu City College Department of Food and Nutrition, , 157 Ishinden-Nakano, Tsu, Mie 514-0112, Japan

3. Osaka University Global Center for Medical Engineering and Informatics, , 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

Abstract Lipocalin-type prostaglandin D synthase (L-PGDS) binds various hydrophobic small molecules. Since we aim to use human L-PGDS as a carrier in a drug delivery system (DDS) for poorly water-soluble drugs, quality control of the protein is indispensable. In this study, we investigated the thermodynamic stability of human L-PGDS under various pH conditions. Differential scanning calorimetry revealed that the thermal unfolding of L-PGDS was an almost-reversible two-state transition between the native and unfolded states over the pH range from 2.5 to 7.4. The linear relationship of ΔH(Tm) to Tm in this pH range gave a heat capacity change (ΔCp) of 4.76 kJ/(K·mol), which was small compared to those commonly found in globular proteins. The temperature-dependent free energy of unfolding, ΔG(T), specified by Tm, ΔH(Tm) and ΔCp, showed a pH dependence with the highest value at pH 7.4 closest to the isoelectric point of 8.3. The small value of Cp resulted in a large value of ΔG(T), which contributed to the stability of the protein. Taken together, these results demonstrated that human L-PGDS is sufficiently thermostable for storage and practical use and can be useful as a delivery vehicle of protein-based DDS.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3