ADH-Enhancer: an attention-based deep hybrid framework for enhancer identification and strength prediction

Author:

Mehmood Faiza1,Arshad Shazia2,Shoaib Muhammad2

Affiliation:

1. Department of Computer Science, University of Engineering and Technology Lahore , (Faisalabad Campus)   Pakistan

2. Department of Computer Science, University of Engineering and Technology Lahore , 54890 , Pakistan

Abstract

Abstract Enhancers play an important role in the process of gene expression regulation. In DNA sequence abundance or absence of enhancers and irregularities in the strength of enhancers affects gene expression process that leads to the initiation and propagation of diverse types of genetic diseases such as hemophilia, bladder cancer, diabetes and congenital disorders. Enhancer identification and strength prediction through experimental approaches is expensive, time-consuming and error-prone. To accelerate and expedite the research related to enhancers identification and strength prediction, around 19 computational frameworks have been proposed. These frameworks used machine and deep learning methods that take raw DNA sequences and predict enhancer’s presence and strength. However, these frameworks still lack in performance and are not useful in real time analysis. This paper presents a novel deep learning framework that uses language modeling strategies for transforming DNA sequences into statistical feature space. It applies transfer learning by training a language model in an unsupervised fashion by predicting a group of nucleotides also known as k-mers based on the context of existing k-mers in a sequence. At the classification stage, it presents a novel classifier that reaps the benefits of two different architectures: convolutional neural network and attention mechanism. The proposed framework is evaluated over the enhancer identification benchmark dataset where it outperforms the existing best-performing framework by 5%, and 9% in terms of accuracy and MCC. Similarly, when evaluated over the enhancer strength prediction benchmark dataset, it outperforms the existing best-performing framework by 4%, and 7% in terms of accuracy and MCC.

Funder

German Research Center for Artificial Intelligence

Publisher

Oxford University Press (OUP)

Reference76 articles.

1. Histone-net: a multi-paradigm computational framework for histone occupancy and modification prediction;Asim;Complex Intell Syst,2022

2. Enhancer-dsnet: A supervisedly prepared enriched sequence representation for the identification of enhancers and their strength;Asim,2020

3. Enhancer features that drive formation of transcriptional condensates;Shrinivas;Mol Cell,2019

4. Transcriptional regulatory elements in the human genome;Maston;Annu Rev Genomics Hum Genet,2006

5. Enhancer function: mechanistic and genome-wide insights come together;Plank;Mol Cell,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3