A large-scale assessment of sequence database search tools for homology-based protein function prediction

Author:

Zhang Chengxin12ORCID,Freddolino Lydia12ORCID

Affiliation:

1. Department of Computational Medicine and Bioinformatics , Department of Biological Chemistry, , 100 Washtenaw Avenue, Ann Arbor, MI 48109 , United States

2. University of Michigan , Department of Biological Chemistry, , 100 Washtenaw Avenue, Ann Arbor, MI 48109 , United States

Abstract

Abstract Sequence database searches followed by homology-based function transfer form one of the oldest and most popular approaches for predicting protein functions, such as Gene Ontology (GO) terms. These searches are also a critical component in most state-of-the-art machine learning and deep learning-based protein function predictors. Although sequence search tools are the basis of homology-based protein function prediction, previous studies have scarcely explored how to select the optimal sequence search tools and configure their parameters to achieve the best function prediction. In this paper, we evaluate the effect of using different options from among popular search tools, as well as the impacts of search parameters, on protein function prediction. When predicting GO terms on a large benchmark dataset, we found that BLASTp and MMseqs2 consistently exceed the performance of other tools, including DIAMOND—one of the most popular tools for function prediction—under default search parameters. However, with the correct parameter settings, DIAMOND can perform comparably to BLASTp and MMseqs2 in function prediction. Additionally, we developed a new scoring function to derive GO prediction from homologous hits that consistently outperform previously proposed scoring functions. These findings enable the improvement of almost all protein function prediction algorithms with a few easily implementable changes in their sequence homolog-based component. This study emphasizes the critical role of search parameter settings in homology-based function transfer and should have an important contribution to the development of future protein function prediction algorithms.

Funder

National Institute of Allergy and Infectious Diseases

National Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3