Cyclic Framed Little Disks Algebras, Grothendieck–Verdier Duality And Handlebody Group Representations

Author:

Müller Lukas1,Woike Lukas2

Affiliation:

1. Max-Planck-Institut für Mathematik , Vivatsgasse 7, D-53111 Bonn, Germany

2. Institut for Matematiske Fag, Københavns Universitet, Universitetsparken 5 , DK-2100 Copenhagen Ø, Denmark

Abstract

Abstract We characterize cyclic algebras over the associative and the framed little 2-disks operad in any symmetric monoidal bicategory. The cyclicity is appropriately treated in a coherent way, that is up to coherent isomorphism. When the symmetric monoidal bicategory is specified to be a certain symmetric monoidal bicategory of linear categories subject to finiteness conditions, we prove that cyclic associative and cyclic framed little 2-disks algebras, respectively, are equivalent to pivotal Grothendieck–Verdier categories and ribbon Grothendieck–Verdier categories, a type of category that was introduced by Boyarchenko–Drinfeld based on Barr’s notion of a $\star$-autonomous category. We use these results and Costello’s modular envelope construction to obtain two applications to quantum topology: I) We extract a consistent system of handlebody group representations from any ribbon Grothendieck–Verdier category inside a certain symmetric monoidal bicategory of linear categories and show that this generalizes the handlebody part of Lyubashenko’s mapping class group representations. II) We establish a Grothendieck–Verdier duality for the category extracted from a modular functor by evaluation on the circle (without any assumption on semisimplicity), thereby generalizing results of Tillmann and Bakalov–Kirillov.

Funder

the Danish National Research Foundation

European Research Council under the European Union’s Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference61 articles.

1. On Framings of 3-Manifolds;Atiyah;Topology,1990

2. A duality formalism in the spirit of Grothendieck and Verdier;Boyarchenko;Quantum Top.,2013

3. Invertible braided tensor categories;Brochier;Alg. Geom. Top.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Consistent Systems of Handlebody Group Representations;International Mathematics Research Notices;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3