Homology and cohomology via the partial group algebra

Author:

Alves Marcelo Muniz123ORCID,Dokuchaev Mikhailo123ORCID,KochloukovA Dessislava H123

Affiliation:

1. Departamento de Matemática, Centro Politécnico, Universidade Federal do Paraná (UFPR) , Curitiba, PR 81531-980, Brazil

2. Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão , 1010, São Paulo, SP 05508-090, Brazil

3. Departamento de Matemática Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda , 651, Campinas, SP 13083-859, Brazil

Abstract

ABSTRACT We study partial homology and cohomology from the ring theoretic point of view via the partial group algebra $\hspace{2pt} \mathbb{K}_{par} G$. In particular, we link the partial homology and cohomology of a group G with coefficients in an irreducible (resp. indecomposable) $\hspace{2pt} \mathbb{K}_{par} G$-module M with the ordinary homology and cohomology groups of a subgroup H of $G,$ where H depends on $M,$ with coefficients in an appropriate irreducible (resp. indecomposable) $\hspace{2pt} \mathbb{K} H$-module. Furthermore, we compare the standard cohomological dimension $cd_{\hspace{2pt} \mathbb{K}}(G)$ (over a field $\hspace{2pt} \mathbb{K}$) with the partial cohomological dimension $cd_{\hspace{2pt} \mathbb{K}}^{par}(G)$ (over $\hspace{2pt} \mathbb{K}$) and show that $cd_{\hspace{2pt} \mathbb{K}}^{par}(G) \geq cd_{\hspace{2pt} \mathbb{K}}(G)$ and that there is equality for $G = \mathbb{Z}$.

Publisher

Oxford University Press (OUP)

Reference51 articles.

1. Cohomology of partial smash products;Alvares;J. Algebra,2017

2. Partial representations of Hopf algebras;Alves;Journal of Algebra,2015

3. Dilations of partial representations of Hopf algebras;Alves;Journal of the London Mathematical Society,2019

4. Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions;Ara;Advances in Mathematics,2014

5. Dynamical systems of type and their C*-algebras;Ara;Ergodic Theory and Dynamical Systems,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3