Instantons on Sasakian 7-manifolds

Author:

Portilla Luis E12,SÁ Earp Henrique N12

Affiliation:

1. Department of Mathematics Institute of Mathematics, Statistics and Scientific Computing University of Campinas (Unicamp), Rua Sérgio Buarque de Holanda, 651, Campinas, SP 13083-859, Brazil

2. Department of Mathematics Institute of Mathematics, Statistics and Scientific Computing University of Campinas (Unicamp) Rua Sérgio Buarque de Holanda, 651, Campinas, SP 13083-859, Brazil

Abstract

AbstractWe study a natural contact instanton equation on gauge fields over 7-dimensional Sasakian manifolds, which is closely related to both the transverse Hermitian Yang–Mills (HYM) condition and the G2-instanton equation. We obtain, by Fredholm theory, a finite-dimensional local model for the moduli space of irreducible solutions. Following the approach by Baraglia and Hekmati in five dimensions [1], we derive cohomological conditions for smoothness and express its dimension in terms of the index of a transverse elliptic operator. Finally, we show that the moduli space of self-dual contact instantons is Kähler, in the Sasakian case. As an instance of concrete interest, we specialize to transversely holomorphic Sasakian bundles over contact Calabi–Yau 7-manifolds, as studied by Calvo-Andrade, Rodríguez and Sá Earp [8], and we show that in this context the notions of contact instanton, integrable G2-instanton and HYM connection coincide.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference21 articles.

1. Moduli spaces of contact instantons;Baraglia;Advances in Mathematics,2016

2. The Ricci tensor of SU (3)-manifolds;Bedulli;Journal of Geometry and Physics,2007

3. Vector bundles on Sasakian manifolds;Biswas;Advances in Theoretical and Mathematical Physics.,2010

4. Riemannian Geometry of Contact and Symplectic Manifolds

5. 3-Sasakian manifolds;Boyer,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calabi–Yau links and machine learning;International Journal of Data Science in the Mathematical Sciences;2024-06

2. Machine learning Sasakian and G2 topology on contact Calabi-Yau 7-manifolds;Physics Letters B;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3