Common and Sidorenko Linear Equations

Author:

Fox Jacob1,Pham Huy Tuan1,Zhao Yufei2

Affiliation:

1. Department of Mathematics, Stanford University, Stanford, CA 94305, USA

2. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Abstract A linear equation with coefficients in $\mathbb{F}_q$ is common if the number of monochromatic solutions in any two-coloring of $\mathbb{F}_q^{\,n}$ is asymptotically (as $n \to \infty$) at least the number expected in a random two-coloring. The linear equation is Sidorenko if the number of solutions in any dense subset of $\mathbb{F}_q^{\,n}$ is asymptotically at least the number expected in a random set of the same density. In this paper, we characterize those linear equations which are common, and those which are Sidorenko. The main novelty is a construction based on choosing random Fourier coefficients that shows that certain linear equations do not have these properties. This solves problems posed in a paper of Saad and Wolf.

Funder

Packard Fellowship and NSF

MIT Solomon Buchsbaum Fund and Sloan Research Fellowship

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Multiple recurrence and nilsequences;Bergelson;Invent. Math.,2005

2. On the Ramsey multiplicity of graphs – problems and recent results;Burr;J. Graph Theory,1980

3. On monochromatic solutions of equations in groups;Cameron;Rev. Mat. Iberoam.,2007

4. An approximate version of Sidorenko’s conjecture;Conlon;Geom. Funct. Anal.,2010

5. Some advances on Sidorenko’s conjecture;Conlon;J. London Math. Soc.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Ramsey Multiplicity Bounds and Search Heuristics;Foundations of Computational Mathematics;2024-08-26

2. On uncommon systems of equations;Israel Journal of Mathematics;2024-08-04

3. Linear configurations containing 4-term arithmetic progressions are uncommon;Journal of Combinatorial Theory, Series A;2023-11

4. Applications of Mitomycin C in Cornea and External Disease;Turkish Journal of Ophthalmology;2023-06-01

5. Towards a characterization of Sidorenko systems;The Quarterly Journal of Mathematics;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3